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ABSTRACT
For the years 1997 to 2000 it is expected that a number of new satellites will be launched into orbit by private companies

which are speci�ed to deliver panchromatic imagery of the earth surface with a spatial resolution as �ne as 1 m. In contrast

to the panchromatic band, the spectrally resolved bands will have a four times coarser ground resolution. Therefore, image

fusion algorithms will certainly be employed in order to produce `sharpened' color imagery.

The new satellites have the potential of stimulating and expanding the remote sensing market for image products at a resolution

around one meter. In order to prepare for this era we have examined image fusion algorithms using already available airborne

imagery. This paper tests fusion algorithms on imagery which was simulated using multispectral images of an airborne scanner

(DAEDALUS ATM) with an average resolution of 1 m.

The main advantage of a simulation of satellite images is the possibility to immediately check the deviation between the original

1 m imagery and the fused (1 m + 4 m) multispectral image. Thus, various fusion algorithms can be tested with regard to

their accuracy concerning e. g. land cover classi�cation or change detection.

The spectral accuracy of the fused imagery depends strongly on the spatial resolution and scene content. Therefore, accuracy

assessments from e. g. SPOT + LANDSAT TM - fusion can certainly not simply be extrapolated down to 1 m imagery. We

�nd that the spectral accuracy of the simulated fused imagery indeed varies with di�erent fusion algorithms. Even though the

spectral accuracy of the fused imagery turns out to be limited, we �nd consistent results of land cover classi�cations.

1 Announced Arrival of Commercially Available
High Resolution Satellite Imagery {

Applicability to Local Environmental Monitoring

For the years 1997 to 2000 it is expected that a number of

new satellites will be launched into orbit by private compa-

nies (Gupta 1995, Doyle 1996) which are speci�ed to deliver

imagery of the earth surface of a spatial resolution as �ne as

1 m.

This �ne a resolution has so far been the privilege of airborne

rather than spaceborne overhead imagery { at least as far

as the civilian community and multispectral (in contrast to

panchromatic) imagery is concerned. Airborne image 
ights

have a longstanding importance for cadastre, local planning

and environmental monitoring (e.g. the health status of public

trees in the city of Hamburg is monitored on aerial Color In-

frared (CIR) photographs). So far the necessary image 
ights

are conducted by private enterprises on particular customer

request. They are thus rather expensive.

Multispectral spaceborne imagery on the other hand has been

exploited for a number of environmental issues (such as defor-

estation, deserti�cation, plant stress, water polution, climate

warming etc.) but always on a global or regional scale { due

to its limited spatial resolution (LANDSAT TM images have a

pixel size of 30� 30m).

With the arrival of meter-range spaceborne imagery which can

be purchased o�-the-shelf by local authorities at the moment

when the demand arises, overhead imagery may become a

serious option even for purposes of local interest which up to

now could not justify the higher cost of image 
ights.

2 Simulation of High Resolution Satellite Imagery from
Multispectral Airborne Scanner Imagery

Launch of the �rst of the announced satellites is expected as

early as summer 1997. It can be assumed that the testing

and calibration phase will last for the �rst year of operations.

It has to be noted, however, that the schedule for all of the

announced satellites already had to be delayed several times.

In the meantime, we are in the position to simulate the high

resolution satellite imagery from airborne scanner images of

comparable spatial resolution. The imagery was recorded by

a DAEDALUS AADS 1268 line scanner with N = 10 spectral

bands on board a Dornier Do 228 aircraft during �ve cam-

paigns from 1991 to 1997 in cooperation with the German

Aerospace Research Establishment (DLR) at 
ight altitudes

of 300 m, 900 m and 1800 m. The 300 m imagery has a nadir-

looking ground resolution of 70 cm. Due to the panorama

characteristic of so-called `whisk broom' - line scanners and

the large swath angle of �43�, the ground resolution degrades
to 1.40 m towards the image margins. The resolution is usu-

ally also slightly degraded by the resampling process required

by georeferencing (which is compulsory for a number of ap-

plications). On average, the images have a resolution of 1 m,

equally for all 10 spectral bands.

For all environmental image analysis purposes it is essential

to have a spectral band in the near infrared (NIR). There,

vegetation has a very high re
ectance and is the most distinct

from non-vegetation land cover. Also, plant health and plant

stress show up in the increase of re
ectance between the red

and the NIR. Therefore we have simulated a photographic

CIR image, where the spectral bands of Green, Red and the

(invisible) Near Infrared (G,R,NIR) are coded by Blue, Green



            

Figure 1: Panchromatic image of urban area near the airport

of N�urnberg, resolution 1 m.

and Red (R,G,B), respectively, and merged into a composite

pseudo-color image.

The speci�cations of the high resolution satellites indicate

that the 1 m resolution will only be reached for the panchro-

matic imagery. The spectrally resolved bands will come in a

spatial resolution of only 4 m. We have simulated both the

panchromatic full resolution image (Figure 1, by weighted

average of the spectral bands) and the spectral band images

(Figure 2, by averaging each 4� 4 pixel window into one new

pixel).1

3 Data Fusion between 1 m Panchromatic and 4 m
Color Imagery

For local environmental applications we need both the spec-

tral resolution (i.e., at least three distinct spectral bands:

G,R,NIR) and good spatial resolution. Therefore, a fusion

between the well resolved panchromatic and the four times

coarser multispectral images is necessary.

Numerous e�orts have been made to fuse data received

from the same scene but di�erent sensors (Shen et al. 1994,

Darvishsefat 1995, Zhukov et al. 1995, Patterson et al. 1996,

Peytavin 1996, Zhukov et al. 1996). Particular respect has

been paid to the merging of image data with di�ering spatial

resolution. If the two sensors do not operate from the same

platform, the geometric recti�cation and registration of the

images is a prerequisite to data fusion. Experience has shown

1
Postscript and PDF versions of this paper containing color images can

be downloaded from

http://kogs-www.informatik.uni-hamburg.de/projects/censis

/publications.html.

            

Figure 2: Simulated color infrared image of urban area, res-

olution 4 m.1

this to be a relatively easy process for satellite imagery (stable

orbits and altitudes, small swath angles), but a rather cum-

bersome procedure for airborne line scanner imagery (
ight

track and altitude variations). In the particular case of the

expected high resolution satellites this is not an issue since

both the panchromatic and the multispectral image data are

recorded from the same platform.

3.1 Fusion by HSV Transformation

The most widely applied fusion procedure is the merging

of panchromatic SPOT imagery (10 m) with three-color

SPOT imagery (20 m) or multispectral LANDSAT TM im-

agery (30 m). The simplest, most wide-spread and proba-

bly most intuitive technique works as follows (Kraus 1990,

Albertz 1991):

1. Take three spectral bands from the multispectral im-

agery;

2. register the low resolution color image to the high res-

olution panchromatic image (i.e. essentially to magnify

the color image to the same pixel size as the panchro-

matic image);

3. transform the magni�ed color image from an RGB color

system into the HSV color system (Hue, Saturation,

Value; see Foley et al. (1995));

4. replace the \Value" image by the high resolution

panchromatic image;

5. transform back into the RGB color system.

This technique is known to work well for moderate resolution

ratios (such as 1:3 for SPOT + LANDSAT TM). The results
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Figure 3: Fusion by HSV transformation.

are still helpful but less reliable for resolution ratios such as

1:20, e.g. for fusion of SPOT color images with panchromatic

aerial photography (Ersb�ll et al. 1997).

In Figure 3 the steps involved in simulating the panchromatic

and color infrared image and the fusion by HSV transforma-

tion are shown as a 
ow chart.

It has to be noted, however, that fusion by HSV transforma-

tion can be applied only to multispectral imagery consisting

of three bands, since the image has to be coded as an RGB

image before fusion can take place.

3.2 Fusion by Relative Contribution

Because the results of the fusion by HSV transformation were

not fully satisfactory, also a second fusion method was exam-

ined, which can be described by the equation

F =
MUL4m

PAN4m

� PAN1m (for each pixel)

where F is the newly created fused image,MUL4m is the mul-

tispectral (color infrared) image with 4 m resolution, PAN1m

is the highly resolved panchromatic image, and PAN4m is a

panchromatic image created by averaging the three bands of

the multispectral image. In principle the �rst term in the

above equation describes the spectral information while the

spatial information is represented by the panchromatic image

PAN1m.

In contrast to the HSV transformation this fusion method

produced images which were better correlated to those truly

sampled at 1 m (see Section 4.1). Another advantage of this

technique is that it is possible to fuse images with any number

of bands, that cannot be coded by red, green and blue.

The result of an application of this technique to the exam-

plary image shown here can be seen in Figure 5. In addition to

the above recipe (Section 3.1), after the magni�cation of the

color image (step 2), the color image was smoothed in a slid-

ing local window of the size of the resolution ratio (here 4� 4

pixels). This amounts to a bilinear interpolation between the

known color values at the coarse resolution grid, and achieves

the surprisingly `sharp-looking' CIR image (Figure 4).

            

Figure 4: Color infrared image of urban area, after bilinear

interpolation of 4 m-image.1

            

Figure 5: Color infrared image of urban area, fused from

panchromatic image at (1 m) and color infrared image (4 m).1



4 Comparison between Fused Image and
Full-Resolution Image

Although the result of the fusion looks very satisfactory to the

eye, its spectral truth remains to be checked quantitatively.

When the real satellite imagery becomes available, data fusion

in order to yield high resolved color images will certainly be

performed. However, the accuracy of the estimated color val-

ues will remain unknown, and thus also the errors which prop-

agate through later image processing steps such as land cover

classi�cation, change detection, NDVI computation, etc.

In contrast, with the airborne / simulated imagery we are

in a position to immediately check the deviation between the

multispectral imagery which is truly sampled with 1 m ground

resolution and the one interpolated from 4 m resolution by

data fusion with 1 m panchromatic resolution. The following

quantitative comparisons can be made:

� We can directly regress the true intensity or re
ectance

values against the fusion-estimated values for each

spectral band and determine the correlations.

� We can determine the root mean square deviation in

re
ectance between true and fusion-estimated values.

� The NDVI-values (normalized di�erence vegetation in-

dex, used for vegetation health monitoring) can be

computed and compared to the full-resolution imagery.

� The true and the fusion-derived imagery can be classi-

�ed into land cover classes (Richards 1993). Between

the two results, a confusion matrix can be calculated

and a statistical indicator of agreement ('Kappa coef-

�cient', Congalton (1991)) on the overall classi�cation

accuracy of the fusion-estimated imagery in compari-

son to the true 1 m imagery.

In the following, the results of the above comparisons are

described.

4.1 Correlation between Original and Fused Image

Since the color infrared image truly sampled at 1 m is avail-

able, the correlation between this original image and the fused

image can be calculated directly. In Figure 6 the correlation

between an original image with a resolution of 1 m and the

fusion-derived image is shown for the bands Near Infrared,

Red and Green. The fusion method applied here was the

HSV transformation. Each pixel de�ned by its spatial coordi-

nates has two re
ectance values, one in the original and one

in the fused image, so every point in the scatterplot repre-

sents one pixel. If both images were identical, all the points

would be located on the straight line which is also plotted for

orientation.

While the correlation between both images is very good in

the red and green bands, the near infrared seems to be less

correlated. The graphs in Figure 7 show the correlations of

the same scene, but here the fused image was obtained by

the relative contributions method.

The following table contains the correlation coe�cients cor-

responding to the graphs in Figures 6 and 7:

Correlation coe�cient

Fusion method Near infrared Red Green

HSV transformation 0.82 0.96 0.97

Relative contributions 0.96 0.98 0.98

            

Figure 6: Correlation between original image sampled at

1 m and image fused by HSV transformation.

            

Figure 7: Correlation between original image sampled at

1 m and image fused by relative contributions.



            

Figure 8: Normalized Di�erence Vegetation Index of urban

area.

The reason for the rather low correlation coe�cients caused

by the HSV transformation is probably due to the way the

\Value" image is produced. The HSV transformation as it

is described by Foley et al. (1995) assigns the maximum

brightness of the red, green and blue channel to the \Val-

ue". Therefore, the \Value" does not correspond directly to

the panchromatic intensity which is an average of the three

bands. In this regard it becomes questionable to replace the

\Value" image with the panchromatic image.

4.2 Normalized Di�erence Vegetation Index

The normalized di�erence vegetation index (NDVI) which is

used e. g. for vegetation health monitoring is de�ned by

NDVI =
NIR�R

NIR+ R
2 [�1;+1]

where NIR is the near infrared band and R is the red band. In

Figure 8 the NDVI values of the original and the fused color

infrared image are regressed for the exemplary image showing

an urban area (Figure 1). The correlation coe�cient for this

image is � = 0:87 while the root mean square deviation is

� = 0:16.

Similarly, in Figure 9 the same variables are plotted for the

vegetation area shown in Figure 10. Here, the correlation

coe�cient is higher (� = 0:90) and the deviation lower (� =

0:11) than that of the urban area image. The reason for

this is the lower spectral variability of the vegetation image.

While in the urban area there are many transition lines from

vegetation to non-vegetation, the vegetation image is quite

uniform. Therefore, the blurring of the spectral information

induced by fusion has a smaller e�ect on the latter image.

5 Classi�cation

One of the most wide-spread applications for multispectral

images is ground cover classi�cation. For the assessment

of classi�cation agreement between true and fusion-derived

imagery the Iterative Optimization Clustering (or Migrating

Means) k-means algorithm as described e. g. by Richards
(1993) was used. The initial clusters in the spectral domain

were chosen randomly and the pixels were assigned iteratively

            

Figure 9: Normalized Di�erence Vegetation Index of veg-

etation area.

            

Figure 10: Vegetation area near N�urnberg.1



to the currently nearest candidate cluster on the basis of the

Euclidean distance measure.

First, the original image truly sampled at 1 m was classi�ed

into a particular number of ground cover classes. The such

found cluster centers were then used again to classify the

fused images. This ensures that it is meaningful to compute

a confusion matrix and a kappa coe�cient (Congalton 1991)

in order to quantify the error induced by fusion.

5.1 Classi�cation Agreement

When two images are classi�ed, the agreement of classi�ca-

tion can be expressed by a confusion matrix (Richards 1993).

As an example, the following confusion matrix was found af-

ter both the true and fused image of the urban area (Figure 1)

were classi�ed into three ground cover classes:

Original Image Class

A B C �

Fused A 117481 0 2136 119617

Image B 0 11274 2 11276

Class C 2069 171 106867 109107

� 119550 11445 109005 240000

The pixels that were assigned to the same class twice are

on the diagonal, while the other matrix elements represent

the numbers of pixels classi�ed into di�erent classes. In the

above example there is no confusion between the classes A

and B, virtually no confusion between B and C, and only a

slight confusion between A and C.

To quantify the agreement of classi�cation, the kappa coef-

�cient (Congalton 1991) can be used, which is de�ned by

� =
p0 � pz

1� pz
;

where p0 is the overall accuracy given by the sum over the

diagonal matrix elements:

p0 =
1

N

X
i

Xii :

From this number the fraction pz of pixels that could have

been accidentally classi�ed correctly has to be subtracted:

pz =
1

N2

X
i

 X
j

Xij �
X
j

Xji

!
:

This has to be done, because even if the pixels were assigned

to the classes completely at random, some pixels would nev-

ertheless be assigned to the same class for both images.

The kappa coe�cient for the above confusion matrix is

� = 0:97, which would be assessed as an excellent agree-

ment (Ortiz et al. 1997).

Both the original and fused images of the two scenes (ur-

ban, vegetation) were classi�ed, while varying the number of

classes. The result is shown in Figure 11.

Generally, the kappa coe�cient decreases with increasing

number of classes, which can be explained by the increas-

ing number of transition areas between classes in the image.

At these land cover class borders, the multispectral informa-

tion is blurred and misclassi�cation occurs. Furthermore, the
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Figure 11: Classi�cation Agreement.

fusion using relative contributions gives a better agreement of

classi�cation, which is due to the better correlation between

the images, as shown in Section 4.1. Another e�ect that is

observed is that the urban area image is classi�ed more con-

sistently, which is due to the greater variation in the spectral

information. In the vegetation example, the classes are very

similar, so that misclassi�cation becomes more probable.

6 Summary

High resolution satellite imagery was simulated using airborne

scanner imagery and two di�erent fusion algorithms were ap-

plied to the data. The advantages of the fusion by relative

contributions compared with HSV transformation are a better

correlation between the original (1 m) and the fused (1 m +

4 m) imagery and the applicability to multispectral imagery

with more than three bands. If the four times coarser mul-

tispectral image is smoothed before the fusion process, the

resulting images do not only look better to the eye but also

show a better correlation.

The comparison of fused and full resolution images

showed that NDVI-computations and land cover classi�ca-

tion strongly depend on the applied fusion method and scene

content.

If fusion by relative contributions is used, the agreement of

classi�cation (kappa coe�cient) between original and fused

images is generally very high. The kappa coe�cient decreases

with an increasing number of classes, since more transitions

between classes are introduced, where misclassi�cation can

occur due to the blurred spectral information. It emerged

that the classi�cation agreement also strongly depends on

the variability of the scene content, i. e. the kappa coe�cient

is higher for images with a wider range of spectral classes.
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