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Abstract. We suggest a novel approach to the Color Constancy Prob-
lem for multispectral imagery. Our approach is based on a dichromatic
illumination model and �lters out all spectral information which possi-
bly stems from the illumination rather than from the reectance of a
given surface. Instead of recovering the reectance signal, the suggested
mapping produces a new only surface reectance-dependent descriptor
which is invariant against varying illumination. Sole input is the relative
direct to di�use illumination spectrum, no assumptions about the possi-
ble reectance spectra are made.
The mapping is a purely pixel based, fast, one-pass matrix operation
and can preprocess multispectral images in order to segment them into
regions of homogeneous reectance, unperturbed by varying illumination
conditions.

1 Introduction

The Color Constancy Problem arises whenever one wants to distinguish and

classify radiance spectra received by a multispectral sensor and does not have

su�cient knowledge about the respective illuminating irradiances. The signi�-

cant reectance spectrum of a surface can only be retrieved from the measured

radiance spectrum if the proper illuminating spectral irradiance is known.

There is no general solution to the Color Constancy Problem, but approaches

with respect to various applications have been made [3][4][5][7]. Remotely sensed

multispectral aerial imagery is sampled at typically 5 to 100 spectral bands

(channels). We show that the abundance of spectral information allows to over-

come the illumination uncertainty.

This paper starts o� from a dichromatic illumination model, i.e., a direct and

a di�use irradiance spectrum, and Lambertian reectance, while not making any

assumptions about the reectance spectra. We show how to retrieve the spectral

reectance information contained in the observed spectra which cannot possibly

stem from varying illumination. We present a �lter process which is purely pixel

based and does not use context assumptions as e.g. supposedly homogeneous and

continuous surface regions. Moreover it does not require multiple views of the

same surfaces under di�erent illuminations as in photometric stereo methods. In

contrast to the well known homomorphic �ltering [6] the here presented �ltering

takes place not in the spatial but rather in the spectral domain.

The suggested mapping can improve classi�cation or segmentation of mul-

tispectral images. It is based on a physically meaningful and experimentally

veri�ed dichromatic illumination model.



2 Dichromatic Illumination

For multispectral remote sensing applications as well as for outdoor scenes in

computer vision it is common to model the global illumination onto a horizontal

surface Eglob = Edir+Edi� as a dichromatic illumination with two basic sources:

� direct illumination Edir (sunlight) from the sun approximated as a point

source,

� di�use illumination Edi� (skylight) from the whole remaining upper hemi-

sphere (distributed source).

The di�use illumination Edi� is generated by sunlight scattered on air molecules

(Rayleigh-scatter) and aerosols (Mie-scatter). So direct and di�use illumina-

tion have distinct spectra, the ratio of which can be well described [1][8] as:

Edi�=Eglob � ��a with the wavelength � in units of �m, and a typical exponent

a = [1:::4].

For tilted surfaces the contributions of direct and di�use illumination change

with surface orientation. We �nd di�erent angular dependencies for point and

distributed sources respectively. As many small scale and man made objects

are too small to be considered in a Digital Terrain Model (DTM), the surface

orientation of a given surface patch often is not available. Consequently we

cannot determine the mixture of the two illumination contributions to which a

given surface patch is exposed. Also, for man made objects in aerial imagery

we cannot assume smooth and continuous surfaces.

2.1 Illumination Dependent Spectral Variance

Depending on the sensor, we observe radiance spectra x = (x1; :: ; xN )
T sampled

at N spectral bands of wavelength �i. Assuming Lambertian reection, the

observed radiance spectra x are given by the direct and di�use illumination

spectra n = Edir and m = Edi� multiplied component-wise with the speci�c

surface reectance spectra r:

xi = ri�(mi + �ni) ; �; � > 0 (1)

where � is an overall brightness factor, and � is the relative contribution of

direct illumination. In order to separate illumination and reectance we change

into the logarithmic domain:

lnxi = ln ri + ln�+ ln(mi + �ni) : (2)

Now we expand the illumination term into a Taylor series in � for � � 1:

ln(xi=ri) = ln��

1X
k=1

(�1)k (k � 1)! (� � 1)k
�

ni

ni +mi

�k
(3)

lnx� ln r � c01+

K�1X
k=1

ckn̂
k = Qc (4)

where c is a coe�cient vector, and the powers of n̂ with n̂i =
ni

ni+mi

form the

columns of the N �K matrix Q =
�
n̂0:: n̂K�1

�
.



2.2 Experimental Results

We have recorded spectra (N = 1000 spectral bands) of di�erent surfaces includ-

ing a Lambertian reference panel under arbitrary angles, illuminated by clear

and hazy skies. A principal component analysis of the logarithm of the observed

spectra for each surface shows that the variance is well described by two eigen-

vectors, which are independent of the reecting material. The eigenvectors are in

good agreement with the expected [n̂0; n̂1] � [1;��a] after ortho-normalization.

Figure 1: The two
most signi�cant eigen-
vectors of the covari-
ance matrix of the log-
arithmic spectra ob-
served under arbitrary
angles.

3 The Filter Process

Now the aim is to �lter out the variable components in order to produce an

invariant spectral descriptor. The �rst K powers of n̂ can be extracted from

lnx by multiplication with the orthogonal projector P = I �QQ+, where Q+

is the Moore-Penrose generalized inverse of Q.

lnx 7! lnx�QQ+ lnx = P lnx (5)

P = PT is a symmetric N � N matrix and has the de�ning projector prop-

erty PP = P; it is thus an orthogonal projection lRN 7! lRN�K . Then the

exponential function takes us back into the original domain:

x 7! exp(P lnx) : (6)

The �ltering process will necessarily remove reectance information as well

as illumination information. The basic idea is, however, that the reectance

spectra will di�er in features which cannot possibly be explained by varying

illumination. The experimental results (Fig. 1) show that the illumination co-

variance eigenvectors are smooth and of low frequency, and thus the �ltering

will not remove higher frequency reectance features. As suggested by the ex-

perimental �ndings, we have achieved good results by �ltering with a matrix Q

of rank K = 2.

4 Results on Simulated Data

In order to demonstrate the illumination invariance of the mapping, we have

sampled four arti�cial spectral reectance primitives at N = 40 spectral bands

(Fig. 2, left panel), and `exposed' these reectance spectra to various illumina-

tions, i.e., multiplied them with di�erent contributions � and � of typical direct



and di�use illumination spectra (Eq. 1). Only for reasons of display they have

been normalized to xTx = 1 in Figure 2 (center panel).

Then the discussed mapping (Eq. 6) has been applied to the simulated spec-

tra, with K = 4. The mapped spectra (Fig. 2, right panel) show vanishing

variance at di�erent illuminations for a single reectance spectrum, but the

reectance specta 1 to 4 are still clearly distinguishable. In other words, if

each spectral reectance forms a spectral class, then the mapped spectra show

vanishing in-class variance but remaining inter-class variance. Hence a subse-

quent classi�cation process can assign the reectance spectra to di�erent spec-

tral classes independently of their unknown respective illumination.

We have tested the robustness of the mapping by superposing strong random

noise on our simulated data (signal to noise ratio SNR = 10). In order to

illustrate the e�ect which the mapping has in the spectral feature space, we have

visualized the N = 40 dimensional space by a principal components projection

into a three dimensional subspace. Figure 3 (top row) shows that the simulated

data of the four reectance spectra is forming planes, which are contracted into

points of vanishing in-cluster variance by the mapping. Figure 3 (bottom row)

shows the same for the noisy data set, where the noise is propagated in a linear

way.

Figure 2: The arti�-
cial reectance spectra
1 to 4 (left panel);
the simulated noise-
free `observed spectra',
i.e., the arti�cial re-
ectance spectra
multiplied with var-
ious illumination
spectra (center panel);
and all these spectra
after the mapping was
applied (right panel).



Figure 3: 3D pro-
jection of the spectral
clusters in the feature
space:
the simulated data
of all four reectance
spectra without noise
(top left) forming four
planes, the respective
mapped spectra (top
right) with vanishing
in-cluster variance,
the simulated data
multiplied with noise
SNR=10 (bottom left),
the respective mapped
spectra (bottom right).

The separability of two multivariate data clusters can be quanti�ed by the

Lawley-Hotelling trace criterion [2]. It describes the distance between the clus-

ters in the multidimensional feature space relative to the expansion of their re-

spective covariance ellipsoids: T 2 = trace(HC�1), where H is the inter-cluster

covariance, and C is the mean intra-cluster covariance matrix.

Table 1

Lawley-Hotelling distances

(without noise)

C1 C2 C3 C4

C1 0.0 7.3�10
4

7.2�10
4

7.3�10
4

C2 0.0 7.2�10
4

7.4�10
4

C3 0.0 7.4�10
4

C4 0.0

Table 2

Lawley-Hotelling distances

(after mapping)

C1 C2 C3 C4

C1 0.0 1.2�10
12

1.2�10
14

2.0�10
14

C2 0.0 1.1�10
14

2.2�10
14

C3 0.0 5.8�10
14

C4 0.0

Table 3

Lawley-Hotelling distances

(with noise)

C1 C2 C3 C4

C1 0.0 4.4�10
4

5.1�10
4

4.9�10
4

C2 0.0 4.6�10
4

5.6�10
4

C3 0.0 5.8�10
4

C4 0.0

Table 4

Lawley-Hotelling distances

(after mapping)

C1 C2 C3 C4

C1 0.0 1.9�10
4

2.2�10
5

1.9�10
5

C2 0.0 4.0�10
5

2.7�10
5

C3 0.0 5.2�10
5

C4 0.0

For the noisefree data before and after the mapping (Tables 1 and 2), the

distances have increased almost in�nitely as the clusters have essentially been

contracted to a point which is the invariant signal. For the random noise data

before and after the mapping (Table 3 and 4), the distances have still increased

by one order of magnitude, except between reectance spectra 1 and 2. For the

last case we note that the low frequency di�erences in reectance can indeed be

mistaken for varying illumination and were removed as such.



5 Conclusion and Outlook

We have shown and experimentally veri�ed that under dichromatic illumina-

tion the spectral variance of a surface observed under arbitrary angles is well

described by two eigenvectors which are surface material independent. Filtering

of these yields a spectral mapping which is invariant against varying illumina-

tion conditions. On simulated spectra we have shown the �ltering to be robust

against noise. Sole input is the relative direct illumination spectrum.

The aim of the discussed mapping is not to separate color and illumination

signals; therefore the mapped spectra are not supposed to resemble the original

reectance spectra. The observed spectra are rather mapped to an illumination

invariant spectral descriptor. The mapped spectra then allow to decide if ob-

served spectra di�er only because of varying illumination, or because of actual

di�erences in reectance.

Cluster analysis in the mapped feature space shows that the separability of

di�erent reectances under varying illumination improves signi�cantly. We can

thus expect better performance of classi�cation and segmentation.

We have recorded spectral data at outdoor experiments and thus veri�ed the

dichromatic illumination model. The next step will be the application of the

suggested mapping to already recorded multispectral aerial imagery.
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